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1. Introduction

The hydrodynamics of cold atoms with interactions at the unitarity limit (for reviews,

see [1]) is a subject crying out for an effective strong-coupling description. Experimentally,

these systems are under extensive and detailed study, and rich data exist. For example,
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the shear viscosity has been extracted [3] from energy-loss during sloshing experiments [4],

leading to an estimate for the ratio η
s which approaches the bound conjectured by [5]. While

this bound is universal in relativistic systems with classical gravity duals [6, 5], the system

of cold fermionic atoms at unitarity is most certainly not a relativistic one, though it does

have non-relativistic conformal symmetry (for a systematic discussion, see [7]). One could

imagine that the nonrelativistic nature of the system has an important effect on this ratio.

Indeed, the counterexamples to the η
s bound proposed in [8] arise in nonrelativistic systems.

Theoretically, however, these systems are hard: perturbative techniques are inadequate,

and lattice methods are difficult to apply to dynamical questions (though see [2]).

In the relativistic context, an effective strong-coupling description of a CFT can some-

times be found in terms of a gravitational theory in extra-dimensional spacetimes [9, 10]

in which the conformal symmetry of the CFT arises from the isometries of the geometry.

Via the Hawking phenomenon, the thermal ensemble of such systems is constructed by

placing a black hole in the extra-dimensional geometry [10]. The rigid structure of black

hole spacetimes, when combined with the finite-temperature gauge/gravity duality, has led

to the observation of universal behavior of these strongly coupled gauge theories at finite

temperature. For a nice review of this work, see [11].

In the non-relativistic case, a natural guess for a strong-coupling description is a dual

geometry whose isometries reproduce the symmetries of the non-relativistic CFT (NRCFT).

Such geometries were constructed recently in [12, 13], with the metric taking the form1

ds2 = L2

(

−dt
2

r2z
+

2dξdt + d~x2 + dr2

r2

)

. (1.1)

Here, ~x is a vector of d spatial coordinates and z is the dynamical exponent, which takes

the value z = 2 for the fermions at unitarity. In [12, 13] this spacetime was shown to solve

the equations of motion of Einstein gravity coupled to a gauge field of mass m2
A = z(z+d)

L2

and a cosmological constant Λ = − (d+1)(d+2)
L2 , and was argued to be dual to an NRCFT at

zero temperature and zero density. To study via duality an NRCFT at finite temperature

and density, then, we need to put a black hole inside this geometry.

In this paper we will construct black holes with the asymptotics of (1.1), show that

they arise as solutions of string theory, and identify the specific non-relativistic conformal

field theories to which they are dual. An analysis of the thermodynamics of these black hole

spacetimes shows that they describe the dual non-relativistic CFTs at finite temperature

and finite density, with the previously-studied geometry of [13, 12] arising in the zero

temperature, zero density limit. Along the way we identify a scaling limit which describes

the system at zero temperature but nonzero density. To produce these solutions, we will

use a solution-generating technique called the Null Melvin Twist [34 – 36, 38, 39], which

we will review in detail below. This Melvinizing procedure is the sought-for analog of the

plane wave limit described in the introduction and conclusion of [13].

We should emphasize at this point that the NRCFT describing Lithium atoms tuned

to a Feschbach resonance probably does not literally have a weakly-coupled gravity dual.

1For previous appearances of related spacetimes in the pre-gauge/gravity-duality literature, see [14 – 16].

For studies of the supersymmetrization of the Schrödinger group please see [21]. See also [22].
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However, the Lithium system has closely related cousins which do have ’t Hooft limits —

indeed, the NRCFTs dual to our black hole spacetimes are precisely such creatures. Our

hope is that these ideas will be useful for studying strongly-coupled cold atoms in at least

the same sense in which the N = 4 theory has been useful for studying universal properties

of strongly-coupled relativistic liquids, including those made out of QCD.

The paper is organized as follows. After reviewing the correspondence proposed in [12,

13] in section 2, we show in section 3 that it can be embedded in string theory. The solutions

are constructed using the Null Melvin Twist, a machine which eats supergravity solutions

and produces new ones. The machine has several dials, which we will tune to various ends.

The input solution that produces the metric (1.1) is the extremal D3-brane in type IIB.

When (in section 3.3) we feed to the Melvinizing machine the near-extremal D3-brane,

we find that it produces black brane solutions which asymptote to the spacetimes (1.1).

We then provide some rudimentary understanding of the identity of the theory at weak

coupling in this realization. In section four we analyze the thermodynamics. In section

five we compute the shear viscosity, and show that the strong-coupling universality found

by [6, 5] extends beyond the class of relativistic systems. We conclude with a discussion of

interesting open questions. The appendices contain the details of the Melvinization process,

an argument for frame-independence of the viscosity calculation, and some progress towards

a 5d effective action.

2. Schrödinger spacetimes and non-relativistic CFTs

Non-relativistic systems which enjoy conformal invariance in d spatial dimension are gov-

erned by a symmetry algebra known as the d-dimensional Schrödinger algebra. In addition

to the usual generators of the Galilei group, i.e. generators of spatial translations, Pi, rota-

tions Mij, Galilean boosts Ki, and time translations, H, the Schrödinger algebra includes

a dilatation operator, D, and a number operator, N , whose non-trivial commutators are

[D,Pi] = iPi [D,Ki] = i(1− z)Ki [D,H] = izH [D,N ] = i(2− z)N [Pi,Kj ] = −δijN

where z, the “dynamical exponent”, determines the relative scaling between the time-

coordinate and the spatial coordinates, [t]=lengthz. In the special case z = 2, the algebra

may be extended by an additional “special conformal” generator, C, whose non-trivial

commutation relations are

[D,C] = −2iC [H,C] = −iD.

In this case z = 2, bothD andN may be diagonalized, so representations of the Schrödinger

algebra are in general labeled by two numbers, a dimension ∆ and a “number” ℓ. For

fermions at unitarity, this number is precisely the fermion number.

Motivated by the relativistic AdS/CFT correspondence, it is natural to wonder whether

there exists gravitational duals for non-relativistic CFTs. By analogy to the relativitstic

case, we expect such a gravitational description to realize the symmetry group of the CFT

as the isometry group of the spacetime. However, since there are now two symmetry gener-

ators which may be diagonalized and whose eigenvalues label inequivalent representations

– 3 –
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(in the AdS case, there is only one, the dimension), we may expect any spacetime which

has the Schrödinger algebra linearly realized as its isometry group to be two dimensions

higher than the CFT, as opposed to one-dimension higher as in the case of AdS.

Such geometries were explicitly constructed in [13] and [12]. More precisely, these pa-

pers constructed a d+3-dimensional metric realizing the d-spatial-dimensional Schrödinger

group as its isometry group, and conjectured the associated gravitational system to be dual

to non-relativistic CFTs at zero temperature and zero density. The metric they presented

appears in (1.1) above. We will refer to these metrics as Schz
d+3, where z labels the dynam-

ical exponent and d the number of spatial dimensions (note that d+3 = (d+1)+2); in the

special case z = 1, Sch1
d+3 = AdSd+3. Many of the generators are simple to realize as isome-

tries of this geometry. For example, the dilatation D is realized as the simultaneous scaling,

{t, ξ, ~x, r} λD→ {λzt, λ2−zξ, λ~x, λr},

while a boost K acts as,

~x→ ~x− ~vt ξ → ξ + ~v · ~x− v2

2
t.

Considerably less obvious, but extremely important to what follows, is the identification,

N = i∂ξ.

The fact that the number operator in a non-relativistic conformal field theory is gapped

(one Li atom, two Li atoms, three. . . ) tells us that ξ must be periodic. But ξ is a null

direction in the bulk geometry. As such, we appear to be forced into a discrete light cone

quantization (DLCQ). This will be made more precise in section 3.

At first sight, compactifying ξ may look problematic. For example, this may appear

to violate boost invariance. However, boost invariance remains unbroken precisely because

the ξ direction is null; this follows from the commutator [N̂ , K̂i] = 0 in the Schrödinger

algebra.2 Perhaps more troublingly, compactifying ξ would appear to introduce a null

conical singularity at r → ∞, which suggests that our metric should not be reliable in the

strict IR. However, this singularity is unphysical. As we shall see below, the singularity

goes away as soon as we turn on any finite temperature — the would-be null singularity

is lost behind a finite horizon which shrouds a garden-variety schwarzschild singularity.

Meanwhile, physically, we always have some finite T in a realistic cold-atom system, and

thus a natural IR regulator. Finally, and most sharply, even in the strict T → 0 case, the

dynamics will resolve this “singularity” in a fashion familiar from the study of null orbifolds

of flat space [30 – 33]: a pulse of stress-energy sent towards large r is steadily blue-shifted

until its back-reaction is no longer negligible; analysis of the back-reaction then shows

that the would-be null-singularity turns over into a spacelike singularity shrouded behind

a (microscopic) horizon. All of which is to say, the strict T → 0 limit of our NRCFT

is unstable to thermalization upon the introduction of any energy, no matter how small.

2We thank Simon Ross for clarifying this issue.
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The challenge, in both the NRCFT and the dual spacetime, is not to crank up a finite

temperature, but to drive the temperature low.

Importantly, this metric is not a vacuum solution of the Einstein equations. As a

result, it is necessary to couple the system to additional background fieldstrengths (a

pressureless dust and a negative cosmological constant) whose stress tensors cancel the

non-zero Einstein tensor of the spacetime metric.3 As we shall see in the next section, this

system — a metric with Schrödinger isometries supported by background fieldstrengths for

massive tensor fields — has a natural embedding into string theory.

Further evidence for the conjectured duality is provided by a comparison of Green

functions for scalar operators as computed in the NRCFT and gravity. The n-point Green’s

function of an operator O in a NRCFT, is determined by the scaling dimension ∆O and

the particle number NO [7]. Indeed, as shown by Nishida and Son [7], this is the case

in any nonrelativistic CFT, since that’s what’s required to specify a representation of the

z = 2 Schrödinger algebra. The two-point Green’s function calculated using the gravity

theory [13] has the same form as that of [7]. Perhaps not surprisingly, the spectrum of the

number operator in the theories dual to geometries of the form (1.1) is the set of integers,

since it arises from the tower of Kaluza-Klein momenta in the ξ direction. The name for

the ξ-momentum conservation law in the n-point functions

l1 + l2 + · · · = l′1 + l′2 + · · ·

is “Bargmann’s superselection rule on the mass” [40]. The stress tensor is an operator which

commutes with the particle number operator (this is a consequence of the Schrödinger al-

gebra). The fluctuations of the bulk metric dual to the stress tensor therefore have zero

ξ-momentum.

Time reversal is an antiunitary operation, which means that it complex conjugates the

wavefunctions. In particular, say in a weakly coupled theory with field operator Ψ, it acts

on an operator Ol by

T : Ol = Ψl . . .Ψ† l−k 7→ O−l.

This is consistent with the fact that our geometries are preserved only by the combined

operation

t 7→ −t, ξ 7→ −ξ.

3. Embedding in string theory

In this section we will show that the zero-temperature solutions described above have a

natural embedding into solutions of Type II string theory. For simplicity, we will mostly

focus on the case z = 2, d = 2, though many other cases may be equally straightforward.

These solutions may be generated in a number of equivalent ways. One useful technique

3The recent papers [19, 20] find a solution of the vacuum einstein equations with only a cosmological

constant — this is just the DLCQ of AdS, with the periodic identification breaking the AdS symmetry

group to its Schrödinger subgroup. As we will discuss in considerably more detail in the next section, this

corresponds to a degenerate limit of the backgrounds considered in [13, 12] and, more generally, in this paper.
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is the “Null Melvin Twist,” (which was named in [36]) which will be described in detail

momentarily. We will use this technique to construct solutions which embed the Sch2
5

geometry discussed above into string theory, as well as solutions which describe the system

at finite temperature and chemical potential. A second useful technique, which is in fact

completely equivalent for the backgrounds we consider, is a simple modification of Discrete

Light Cone Quantization; this presentation will make the structure of the dual field theory

transparent. Let’s begin with the twist.

3.1 The null Melvin twist

The Null Melvin Twist is a solution generating technique for IIB supergravity which eats

known solutions and spits out new solutions with inequivalent asymptotics. Melvinization

has largely been used to construct gravity duals of non-commutative and non-local field

theories [34 – 36, 38, 39]; in the case at hand, the Null twisting produces an extremely

mild form of non-locality, that of non-relativistic theories with instantaneous interactions.

Importantly, these backgrounds have the property that all curvature scalars are identical

to those of the original solution [35]; as a result, the constraints from curvature on when

the supergravity is reliable (e.g. λ ≪ 1) carry over directly. We will comment on other

constraints on the reliability of supergravity below.

Interestingly, some solutions with Schz
5 asymptotics have already appeared in the

Melvinizing literature. For example, the T = 0 limit of one of the solutions in [35, 38]

corresponds to Schz=3
5 , though the form field backgrounds break part of the symmetry

group.4 These were described as dual to “dipole theories” with a non-trivial star-algebra

in the dual field theories. Here we will argue that these and some other backgrounds

generated by the Null Melvin twist are in fact dual to NRCFTs.

The procedure itself is baroque but elementary. The first step is to choose a IIB

background with two marked isometries, which we will call dy and dφ. We then (1) boost

along dy with boost parameter γ, which generates (in general) a new dydt term in the

metric, (2) T-dualize a la Buscher5 along dy, which generates a new dy ∧ dt term in the

NS-NS B-field and a non-trivial dilaton profile, gyy → 1
gyy

, Bty → gty

gyy
and Φ → Φ− 1

2 ln gyy,

(3) re-diagonalize our isometry generators by shifting dφ → dφ + αdy, which generates a

new term in the metric of the form ds2 → . . . + (dφ + αdy)2, then return to our original

frame by (4) T-dualizing back along dy, which generates dydt terms in the metric and

dφ ∧ dy terms in B, and (5) boosting back along dy with boost parameter −γ.
All of this leaves us back in the original frame with a new metric, B-field and non-

trivial dilaton, all of which are horrendously complicated functions of the two knobs, γ

and α. The final step of the Null twist is to (6) simplify this morass by taking a scaling

limit in which the boost becomes infinite, γ → ∞, and the twisting goes to zero, α → 0,

such that the product 1
2αe

γ = β remains finite. The result is a new solution of the full IIB

equations of motion with non-trivial background NS-NS 2-form and deformed metric with

asymptotics inequivalent to the original solution.

4We thank Mukund Rangamani for pointing out the previous appearance of these spacetimes in string

theory.
5The full Buscher rules, and our conventions for them, are given in an appendix.
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3.2 Rampaging Melvin eats extremal D3-brane, spits out Sch2
5

Let’s apply this procedure to our canonical example, the extremal D3-brane, a solution of

IIB supergravity with metric,

ds2 =
1

h

(

−dτ2 + d~x2
)

+ h
(

dρ2 + ρ2ds2S5

)

where h2 = 1 +
R4

A
ρ4 is the usual D3 harmonic function, and self-dual five-form flux

F (5) =
1

ρ5
dτ ∧ dy ∧ dx1 ∧ dx2 ∧ dρ+ Ω5 dθ ∧ dφ ∧ dψ ∧ dµ ∧ dχ,

with Ω5 = 1
8 cos θ cosµ sin3 µ. We must first choose the two isometry directions, dy and

dφ, along which to Melvinize. Let’s take dy to lie along the worldvolume and dφ along the

S5; without loss of generality, we can choose coordinates such that y = x3. A particularly

convenient (though by no means the only possible) choice for dφ is given by the Hopf

fibration S1 → S5 → P
2 with metric,

ds2S5 = ds2
P2 + (dχ+ A)2

where χ is the local coordinate on the Hopf fibre and A is the 1-form potential6 for the

Kähler form on P
2, ie JP2 = dA. We thus take dφ = dχ. Note that both dy and dφ act

freely, which is important for our solution to remain non-singular.

Melvin being a very messy eater, we will hide the details of the procedure in the

appendix and simply write down the result, which is:

ds2 =
1

h

(

−dτ2(1 + β2ρ2) + dy2(1 − β2ρ2) + 2dτdy(β2ρ2)
)

+ hρ2(dχ+ A)2

B = 2βρ2(dχ+ A) ∧ (dτ + dy)

Φ = Φ0 .

Note that nothing has happend to the five-form along the way, since T-duality takes dΩ5,

the top form on the sphere, to dy ∧ dΩ5, so that the twist dφ→ dφ+ βdy of step (3) acts

trivially. We thus have in our final solution the same five-form flux as in the beginning,

F5 = (1 + ∗)Ω5dθ ∧ dφ ∧ dψ ∧ dµ ∧ dχ

To locate the Sch2
5 hiding inside this solution, a few more steps are helpful. Changing

coordinates to t̂ = (y + τ)/
√

2 and ξ̂ = (y − τ)/
√

2, our background becomes,

ds2 =
1

h

(

β2ρ2 dt̂2 + 2dt̂dξ̂
)

+ hρ2(dχ+ A)2

B = 2βρ2(dχ+ A) ∧ dt̂ Φ = Φ0;

6We can compute A from the Kähler potential on P
2, K = t ln

P

|zi|
2, ie

Ai = ir
z̄ī

P

|zi|2
.

For completeness, and because we had a pointlessly slow search for this data in the literature, we present

an explicit set of conventions and coordinate systems in an appendix.
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These variables wear hats in anticipation of imminent better hatless variables. Adding

back in all the terms we dropped in the first step then gives,

ds2 =
1

h

(

−β2ρ2 dt̂2 + 2dt̂dξ̂ + d~x2
)

+ h
(

dρ2 + ρ2ds2S5

)

B = 2βρ2(dχ+ A) ∧ dt̂ Φ = Φ0.

Finally, taking the near-horizon limit, h → R2
A/ρ

2 and switching to the global radial

coordinate r = R2
A/ρ, in terms of which h = r2

R2

A
, the solution becomes,

ds2 =
R2

A

r2

[

−2∆2

r2
dt̂2 + 2dt̂dξ̂ + d~x2 + dr2

]

+R2
Ads

2
S5

B = 2
√

2 ∆
R2

A

r2
(dχ+ A) ∧ dt̂ Φ = Φ0 ,

with ∆ ≡ βR2
A. Upon compactifying on the S5, we precisely recover the Schrödinger

geometry with d = 2 and z = 2, our sought-after Sch2
5.

Note, too, the appearance of the parameter β, which was implicitly set to 1/
√

2 in the

earlier results of [12, 13], by a choice of units. The utility of this parameter is considerable

in what follows. For now, note that retaining it allows a very revealing limit, i.e. β → 0,

in which the solution above reduces to the extremal D3-brane solution with which we

began. This suggests that there should be a more intrinsic description of our solution as a

garden-variety deformation of AdS; we will explore this relation later in this section.

A note on dimensions. As discussed in section 2, ensuring the quantization of the

spectrum of the Schrödinger number operator N̂ requires compactifying the direction ξ,

something not implemented in the Null Melvin Twist described above; this introduces

a new dimensionful parameter to the game, the length scale Lξ. Meanwhile, φ is an

angular direction along a compact space and so dχ is dimensionless, which means α, and

thus β, must have dimensions of 1/length. Our solutions would thus appear to have two

dimensionful parameters, Lξ and β. In the case above, however, the specific values of Lξ

and β can be rescaled by rescaling the coordinates as

t ≡
√

2βt̂ = β(y + τ), ξ ≡ 1√
2β
ξ̂ =

1

2β
(y − τ),

leaving only the product β
Lξ

invariant. In these coordinates, the metric become pre-

cisely (1.1), and we will use these coordinates for the remainder of the paper (the solution

in these coordinates is recorded in appendix A). It is this ability to scale away7 β which

allowed [12, 13] to set β = 1/
√

2. Our extremal solutions are thus parameterized by a single

dimensionless parameter, β
Lξ

. Holding Lξ fixed while scaling β to zero gives a particularly

trivial background which respects the Schrödinger group as its isometries. We note the

limit β → 0 (hence ∆ → 0) in (3.1) is actually rather dangerous when the ξ direction is

compact; in this limit, the geometry contains a circle of zero length for every value of r. As

emphasized by [48], one should worry about the effects of light wound strings. For finite

7Scaling away the value of β will not be possible in the finite-temperature solutions described below.
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β, the circle only becomes null when r → ∞; the finite-temperature solutions below will

have no null circles at all.

Relatedly, in the above we have set c to 1; it is easy to reintroduce c by taking dt → cdt.

Interestingly, the way we are getting a non-relativistic limit is not by taking c→ ∞; rather,

the asymptotic geometry has an effective ceff ∼ cβ
r2 which goes to ∞ as we approach the

boundary. In addition to Lξ and β, then, our non-relativistic theory thus contains a finite

velocity, c. It is natural to interpret this velocity as the speed of sound, vs. We will test this

interpretation in the future. For now, we suppress factors of c, which are easy to restore.

We have thus constructed a solution of Type IIB string theory of the form Sch2
5 × S5

which is dual, according to the results of [13, 12], to some theory which respects the

Schrödinger symmetry algebra, i.e. a non-relativistic conformal field theory with d = 2 and

z = 2. We note that it is straightforward to repeat the analysis of this section for other IIB

backgrounds with the requisite isometries, including in particular other-dimensional branes

and other choices of isometries along which to Melvinize. In the next section, we use the

same techniques to construct a dual description of such an NRCFT at finite temperate and

chemical potential.

3.3 Solutions with finite temperature and chemical potential

As we saw above, feeding the Melvinizing machine an extremal D3-brane produces a so-

lution of IIB string theory with spacetime geometry Schz=2
5 × S5 whose dual field theory

is a NRCFT at zero temperature. Experience with AdS/CFT suggests that putting the

NRCFT at finite temperature should correspond to the introduction of a Rindler horizon in

the bulk spacetime, with modes of the boundary theory thermalized by the Hawking radi-

ation of the black hole. So we need to figure out a way to embed a non-extremal black hole

inside our Schrödinger spacetime. It is natural to guess that feeding Melvin a black D3-

brane, which shares the asymptotic AdS5 × S5 structure of the extremal D3-brane, should

produce a black hole spacetime which is asymptotically Schz=2
5 × S5. As we shall see, this

is correct, with one important modification which will become clear after Melvin does his

thing. This technique for finding black hole solutions has been used previously in [36 – 39].

Thus motivated, let’s Melvinize the black D3-brane solution of IIB string theory. The

starting solution is,

ds2 =
1

h

(

−dτ2f + dy2 + d~x2
)

+ h

(

dρ2

f
+ ρ2

[

ds2
P2 + (dφ+ A)2

]

)

where h =
R2

A
ρ2 is the near-horizon limit8 of the usual D3 harmonic function and f = 1+g =

1− ρ4

H
ρ4 is the emblackening factor, together with the usual five-form fieldstrength supporting

the S5 and providing the 5d cc,

F (5) = (1 + ∗)Ω5 dθ ∧ dφ ∧ dψ ∧ dµ ∧ dχ
8It is easy to keep the full geometry; we skip directly to the near horizon limit here for simplicity.

Keeping the 1 leads to a simple modification of the above, a geometry which may be interpreted as a

non-extremal IIB Fluxbrane; it would be interesting to understand the relation between the NRCFT dual

to our geometry and the worldvolume theory of the full stringy Fluxbrane.
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Melvinizing this solution along the Hopf fibre is a straightforward application of the

recipe described above, so let’s jump to the chase and simply write down the final result

(for completeness, the full computation is presented in an appendix). In String Frame,9

using the coordinates {t, ξ, r} introduced above, the result is

ds2 =
1

r2K

(

− f

r2
dt2 − 2dξdt +

1 − f

2

(

dt√
2β

−
√

2βdξ

)2
)

+
1

r2
d~x2 +

dr2

r2f
+ ds2

P2 +
1

K
(dχ+ A)2 . (3.1)

where (dχ+ A) and dsP2 are as above and

f = 1 − r4

r4H
, K = 1 +

β2r2

r4H
.

In contrast to the T = 0 solution and to the AdS black hole, the dilaton now has a

non-trivial profile,

Φ = −1

2
lnK,

while the Neveu-Schwarz two form takes a slightly different form,

B =
1

2r2K

(

(1 + f)dt+ (1 − f)2β2dξ
)

∧ (dχ+ A)

The five form field strength is again unmodified by the Melvinizing.

It is a simple but tedious exercise to verify that this is a solution to the full 10D IIB

supergravity equations of motion. Explicitly, it solves

Gµν =
∑

p=1,3,5

T (p)
µν e

−δ3
pΦ,

where T (p) is the stress tensor for a minimally-coupled p-form field strength H,

T (H)
µν = − 2

p(p+ 1)

(

1

4
gµνH

2 − p

2
Hµ···H

···
ν

)

and T (1) is the dilaton stress tensor.

There are many things worth noting about this solution. We focus first on the region

near the horizon. The component of the gauge field along the null killing vector normal

to the horizon (i.e. Bτφ = Aτ ) vanishes at the horizon. This is necessary to have a

smooth euclidean continuation. The geometry contains a nice Rindler horizon with normal

(and tangent) vector ∂τ , just as in the pre-Melvin hole — in particular, the would-be

null-singularity living near r → ∞ arising from compactification of ξ is lost behind the

Schwarzschild horizon at r = rH . Near the horizon at r = rH , it is useful to change

coordinates to

r =: rH −R2;

9The transformation to 10d Einstein Frame multiplies the metric by e−
1

2
Φ = K

1

4 .
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up to an irrelevant constant scale factor the metric looks like

ds2 = dR2 −R2κ2dτ2 +
1

r2H
d~x2 + · · ·

with κ ≡ 2
rH
. In order for this to produce a smooth euclidean cigar geometry, the euclidean

time coordinate τ must be identified according to iκτ ≃ iκτ+2π. This is the same result as

for the pre-Melvin hole. Before Melvinizing, τ was also the asymptotic time coordinate, and

this gave a Hawking temperature T pre−Melvin
H = κ

2π = 1
πrH

. With the Schrödinger asymp-

totics, however, t = β (τ + y) is the natural time coordinate. Different Hamiltonians imply

different temperatures. The euclidean continuation of our time coordinate t must be iden-

tified according to iκβ t ≃ iκβ t+2π, and hence the Hawking temperature of our black hole is

TH =
1

πβrH
. (3.2)

Note that the horizon is unmodified by the Melvin procedure [36]; only the asymptotics

(and the relationship to the asymptotic coordinates and horizon coordinates) is changed.

Next note the relative factor of K between the P
2 part of the metric and the (dχ+ A)

term: turning on a temperature has squashed the S5 along the Hopf fibre (though, since

K varies between 1 and 1 + β2 between boundary and horizon, the squashing is gentle).

When we compactify to 5 dimensions, then, we should expect a non-trivial profile for the

scalar field associated with this squashing mode. Note, too, that this squashing breaks the

isometry group of the sphere from SU(4) to a subgroup.10 Entertainingly, T-dualizing on

this fibre still leaves us with a squashed sphere, but the dual dilaton is now constant. This

gives a perhaps-simpler IIA description which may be convenient for various purposes.

This solution also admits a number of illuminating limits. As before, taking β →
0 in (3.1) (fixing the time coordinate used there) effectively un-does the Melvinization,

returning us to the ordinary black D3-brane solution with an identification. Taking T → 0

sends this solution to the zero temperature solution found above, i.e. to Sch2
5 × S5.

All of which raises the obvious question, what is β? At T = 0, we saw that β could

be scaled out of any physical question by a rescaling of coordinates, which can be thought

of as a choice of units in the boundary theory. However, this is not the case at finite

temperature. β thus represents a physical parameter of the finite-temperature black hole

embedded in asymptotically Schrödinger spacetime. To anticipate what property of the

spacetime/NRCFT this parameter represents,11 look back at the Melvinization procedure.

In step (3), α turns on a mixing of the y direction (which will eventually become the ξ direc-

tion after boosting to the IMF) and angular momentum along the S5. In finite temperature

AdS/CFT, angular momentum along the sphere translates into finite chemical potential

for the conserved R-charge dual to the angular momentum current. Combining the above,

10One might have thought that this would mean that the supersymmetry of the background was broken

accordingly (for work on the supersymmetric generalization of the Schrödinger group see [21]). However, [48,

49] claim that all supersymmetry is broken.
11We will verify this through explicit computations of boundary thermodynamic quantities in the next

section.
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we should expect the CFT dual to this emblackened Schz=2
5 to have a finite ξ-momentum

density, aka particle number density, which scales as some power of (β/rm
H ), where the

factor of rm
H with m > 0 is there to ensure that the density runs to zero as T =

√
2

πrH
→ 0

with β held fixed since, as we have seen, any finite β is unphysical at zero temperature so

cannot determine any physical quantity like density in the zero temperature limit.

3.4 In search of QCP: finite density at T = 0

The solutions found above have non-zero temperature and density. However, sending T → 0

appears to send them both to zero. This is bizarre, particularly in a non-relativistic theory

in which particle-antiparticle annihilation is absent so that the number density should stay

fixed as we take the temperature to zero. We must be able to find a finite-density zero-

temperature solution! And indeed it is useful to do so, since refrigeration techniques have

reached the point that thermal effects on the cold atoms can be neglected for many pur-

poses.

The answer was already implicit in the last paragraph of the previous subsection: the

particle number density of our Schrödinger black holes scales as some power of β/rm
H ; the

limit we should take, then, involves sending rH → ∞ (which removes the horizon and sends

the temperature to zero) while taking β → ∞ to hold the density fixed. A little experi-

mentation suggests that the proper limit is to scale r2H ∼ β → ∞, keeping Ω ≡ β
r2

H
fixed.

To define the limit more precisely, we make the following replacements:

rH = ♥1/2r̃H , β = ♥β̃. (3.3)

We will show in section 4 that the particle number density is given by ρ ∝ Ω2, while the

temperature is T = 1
π♥3/2r̃H β̃

. To send T → 0 keeping finite ρ, we should take ♥ → ∞
holding objects with tildes fixed (we will drop the decorations at the end).

Ignoring the sphere directions for simplicity, the metric in the scaling limit ♥ → ∞
takes a particularly lovely form,

ds2♥→∞ =
1

r2κ

(

−dt
2

r2
+ 2dtdξ + Ω2r4dξ2

)

+
d~x2 + dr2

r2
(3.4)

while the B field takes the equally entertaining form,

B =
1

2r2κ

(

dt+ Ω2r4dξ
)

∧ (dχ+ A)

and the dilaton remains non-trivial,

Φ = −1

2
lnκ,

where κ ≡ 1+Ω2r2. The five-form, as usual, goes along for the ride. Perhaps unsurprisingly

given its pedigree, but surprisingly given its form (note that as r → ∞, r2κ ∼ r4, so

the ξ direction asymptotes to a finite radius controlled by Ω), this background can be

explicitly shown to solve the full equations of motion of IIB supergravity. We will study
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the thermodynamics of this solution alongside that of the finite-temperature case in the

next section.

Note, that in our scaling limit, the horizon has run off to r = ∞. Happily, the

null-singularity observed before near r → ∞ is absent thanks to the r4dξ2 term — finite

density has cut off this singularity. However, the dilaton still grows logarithmically. This

means that the theory contains a region of strong coupling in the IR part of the geometry,

somewhat similar to gravity duals of IR-strong gauge theories, such as Dp-branes with

p < 3 [41]. It would be exciting to interpret this scale-dependence of the string coupling in

terms of screening in the boundary theory at finite density.

3.5 The null Melvin twist with finite Lξ as a modified DLCQ

As should by now be clear, the backgrounds we have been studying are intimately connected

to DLCQs. Fleshing out this connection will shed light both on the spacetime solutions

themselves and on the NRCFTs to which they are dual. The remainder of this section is

thus devoted to an analysis of this connection.

The Null Melvin twist has the great advantage of being a concrete tool with which

to generate new IIB solutions from our tired old examples, and as such has been studied

rather extensively. However, at intermediate steps the solutions are far from simple, and

the physical meaning of the procedure is rather opaque: what is the intrinsic relationship

between the final and initial solutions?

Happily, there is another way of organizing the argument which is completely equivalent

and which makes the connection between initial and final solutions manifest, following [34].

Let’s start by studying the DLCQ of the original solution along the ξ = (y−τ)/
√

2 direction

by requiring all fields Φ to be invariant under translation along the light-cone ξ direction,

Φ(ξ + Lξ) = eLξJξΦ(ξ)
!
= Φ(ξ),

where Jξ = ∂ξ is the momentum generator on the light-like direction. This produces the

solution above at β = 0. So: how do we introduce β? The answer is suggested by step

(3) of the Melvinization, in which we re-diagonalized our symmetry generators to mix

the spatial translation current dy into the angular rotation current dφ → dφ + αdy; this

replaces momentum along the (boosted) y-direction, Jy, with the sum of Jy − αJφ, where

αJφ = ∂ 1

α
φ. Boosting back to our original frame and taking the boost large turns this into

Jξ − 1
2αe

γJφ → Jξ − βJφ = Jβ. To get the final solution with β 6= 0, then, we should

perform a modified DLCQ of the original solution in which we orbifold not by a finite

translation by LξJξ, but by the modified current, LξJβ, i.e. we should shift the light-cone

momentum of every field by β times its charge under the dφ isometry. We’ll refer to this

as a DLCQβ.

The physical meaning of the generated solution is thus relatively straightforward: our

Null Melvin Twist, aka the DLCQβ, is a restriction of the original solution to modes

with fixed light-cone- and angular- momenta.12 Note that the DLCQβ of zero-temperature

12Note that for nonzero β, Jβ is not actually light-like in the bulk. So this is in general a DLCQ only

from the point of view of the boundary field theory.
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N = 4 SYM has a particularly trivial limit in which we hold Lξ fixed and scale β → 0 —

this is just the usual DLCQ of AdS5. The fact that this system realizes the Schrödinger

group as isometries is a direct consequence of the compactification of ξ. Unfortunately, this

limit ensures that the particle density of the groundstate is zero, so, while this does describe

a NRCFT it describes the system at zero density only. It is thus extremely important to

preserve the parameter β if we want to describe something like “fermions at unitarity”

rather than “no fermions at unitarity.”

3.6 The DLCQβ of N = 4 SYM

The virtue of the DLCQβ prescription for our purposes is that it translates relatively easily

into the dual field theory. To wit, the NRCFTs dual to our Schrödinger spacetimes arise

as DLCQβ’s of the boundary theories of the original solution. Importantly, the current by

which we orbifold is Jβ = Jξ − βJR, where JR is the U(1) R-current dual to the isometry

current on the S5, Jφ, we used in Melvinization. For example, the NRCFT dual to Schz=2
5

is simply the DLCQβ of the N = 4 SU(N) SYM living on the boundary of the AdS5 with

which we started, with JR the trace of the cartan of the SO(6) R-symmetry (corresponding

to the Hopf fibration we used in Melvinization).

This result may also be derived via direct application of the Null Melvin Twist to the

field theory as follows. Start with the N = 4 SYM theory and compactify it on a circle

y ≃ y + 2πLy with all fields Φ required to satisfy the boundary conditions,

eLy(∂y−iαqR)Φ(y) = Φ(y),

where qR is the charge of Φ under the specified U(1) subgroup of the R-symmetry group.

This is equivalent to inserting an R-symmetry-valued wilson line around the compact spatial

direction [34]. For our special case, we chose the R-symmetry such that all three complex

scalars in the 6 of SO(6) carry the same charge; this corresponds to a shift on the Hopf

circle. Now boost the y direction by γ → ∞ to make it lightlike while scaling α → 0 such

that β = 1
2αe

γ remains fixed. At weak ’t Hooft coupling, this has the following effect.

On the potential terms in the Lagrangian it does nothing because the R-symmetry is a

symmetry. On y-derivative terms it amounts to the replacement ∂ξΦ → ∂ξΦ − iβqRΦ. In

terms of ξ-momentum, the net effect is to shift the moding of each field by a constant piece

proportional to β, ie

Lξ(iℓ− iβqR) = 2πi ⇒ ℓ =
2πN

Lξ
+ βqR,

where N is an integer. This is precisely the DLCQβ described above.

This theory seems remarkably simple, even moreso than the usual un-modified DLCQ

of N=4. To understand why, recall that the usual DLCQ tells us to expand every field

in the theory in modes along the light-like ξ circle. This leaves a KK tower of massive

modes, plus a single level of massless modes — the zero modes of ∂ξ — which must be

treated with, if not respect, at least care. The resulting theory is thus deliciously close

to being non-relativistic, but the persistence of these zero modes reminds everyone that

the theory is really Lorentz invariant. To get a truly non-relativistic theory, we would like
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to lift these zeromodes. But since the upshot of the DLCQβ is to shift the moding of all

fields by β times their R-charge, that is precisely what the DLCQβ does. More precisely,

the only zero-modes surviving the DLCQβ are those of R-scalars, ie of the vector bosons,

and these must be dealt with carefully; among other things, they generate instantaneous

interactions between the remaining non-zero modes of the matter fields. The result is a

theory with only nonrelativistic excitations, with the spectrum gapped by two mass scales,

the KK scale 1/Lξ and the new scale β. In particular, something dramatic happens when

β × (
Lξ

2π ) ∈ Z: Φ picks back up a zero mode (this is just the fact that the wilson line

along the DLCQ circle has phase βLξ). β is thus playing the role of an IR regulator for

the DLCQ zero modes generated by a wilson line. Another curious feature of this scaling

is that in order to excite a single KK mode, we need O( 2π
Lξβ ) would-be-zero-modes; this

suggests that there is an interesting regime where 1 ≪ 〈N〉 ≪ 2π
Lξβ where we can drop the

KK modes but we still have a well-regulated theory. Understanding the interplay between

these two scales in more detail, and especially to see it arise in the dual geometry, seems

worthwhile; we leave such questions to future work.

4. Black hole thermodynamics in Schrödinger spacetimes

4.1 Entropy

The Bekenstein-Hawking entropy density of the black hole (3.1) is

s ≡ S

L1L2
=

1

4G10
Ly

π3

r3H
R8

A =
1

4G5
Ly
R3

A

r3H
. (4.1)

Note that the dependence on β cancels. To write this in terms of more physical variables, we

need to relate Ly to Lξ. What we mean by Ly in the formula (4.1) is the extent of the hori-

zon in the y direction when ξ has period Lξ. To figure out what this is, one need only look

at the metric near the horizon, and plug in. Near the horizon, the metric takes the form:

ds2 = dy2 + · · · =
1

2

(

dt√
2β

+
√

2βdξ

)2

+ · · ·

where . . . is terms which vanish when we ask about the invariant distance between two

events separated only in the ξ direction by an amount dξ = Lξ. Therefore:

Ly = βLξ.

Using the standard parameter map of AdS/CFT (which commutes with Melvinization)

R8
A

4G10
=
N2

2π4
,

and the temperature (3.2), we have

s =
1

4
N2π2β2LξT

3.

For later comparison, it will be useful to note that in units where 16πG5 = 1, we have

s = 2β2Lξπ
4T 3. (4.2)
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4.2 A comment on the correspondence for the stress tensor

We begin with a comment about the mysterious-seeming equation (34) of [12], which built

on ideas of [18].13 The last section of [12] contains an assertion about which modes of the

metric couple to which thermodynamic variables of the boundary theory, which is supported

by matching to a weakly coupled Lagrangian. This expression can be understood more

directly as follows. In the standard AdS/CFT examples, fluctuations of the metric which

have nice equations of motion are the ones with one upper and one lower index. These are

also the components which couple directly to the boundary stress tensor [29, 25], i.e.

Ibdy = O
(

h0
)

+

∫

∂M

√
γ 2 (Tbdy)

µ
ν h

ν
µ + O

(

h2
)

where γ is the metric on the boundary. Given hµ
ν , to determine the perturbation of the

metric gµν = g
(0)
µν + hµν , the right thing to do is to symmetrize:

hµν =
1

2

(

gµρh
ρ
ν + gνρh

ρ
µ

)

.

Adding such a fluctuation to the zero-temperature “schrödinger metric”, and setting

A0 = hξ
t , Ai = hξ

i , Φ = ht
t, Bi = ht

i

gives Son’s equation (34) to linear order in these fluctuations. If ht
ξ is nonzero, there is a

nonzero fluctuation of hξξ. For general z we find to linear order in the fluctuations

ds2 = ds20+

(

A0

r2
− Φ

r2z

)

dt2+
Φ(r)

r2
dξdt+

(

Aidx
i

r2
− Bidx

i

r2z

)

dt+
Bidx

i

r2
dξ+hijdx

idxj + · · ·
(4.3)

So T t
ξ is the number density of the field theory. An analogy which is useful for under-

standing this point is the following. In IIB on AdS5 × S5, considered as a ten-dimensional

theory with a nine-dimensional boundary, what is the meaning of T φ
µ and T µ

φ , components

of the boundary stress tensor with indices in the sphere directions? The answer is that

they give R-current densities. This is quite analogous to the statement that T t
ξ gives the

number density, since in our correspondence the particle number density is the density of

ξ-momentum, just as the R-charge density is the density of momentum around the S5 di-

rections.

Note that the interpretation of T ξ
t and T ξ

ξ remains mysterious.

4.3 Expectation values of the stress tensor

Consider any bulk theory where the matter lagrangian doesn’t involve derivatives of the

metric. If the boundary metric is flat, the terms in the on-shell action which are linear in

the metric fluctuations take the form [29]14

Ibdy = O(h0) +

∫

∂M
hν

µ (Θµ
ν − Θδµ

ν ) + Ibdy,ct + O(h2)

13We are grateful to Dominik Nickel and Pavel Kovtun for help in appreciating this equation.
14In what follows we studiously set the bulk coupling K5 = 1

16πG5
to one.
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where Ibdy,ct contains counterterms involving the matter fields.

Θµν =
1

2
(Dµnν +Dνnµ)

is the extrinsic curvature of the boundary, and nµ is an inward-pointing unit normal vector

to the boundary. Taking nr = −√
grr, the formula to extract the expectation value of the

field theory stress tensor from the bulk data is

(Tbdy)
µ
ν = −2

√
γ (Θµ

ν − δµ
ν (Θ + a) + · · ·)

where γ is the metric on the boundary (i.e. the metric on a fixed-r subspace), and a is a

counterterm coefficient, and . . . . is the contribution of other counterterms. This quantity

should have a finite limit as r → 0 (i.e. as it approaches the boundary).

In these nonrelativistic systems there is one further complication in the extraction of

the expectation values of the field theory stress tensor. This is the fact that the description

of nonrelativistic systems one finds here involves an extra dimension ξ, whose momenta

are associated with the conserved particle number. Since the ordinary stress tensor of the

nonrelativistic system, which we will denote T , is an operator of particle number zero (i.e.

it is of the form Ψ† . . .Ψ), it is related to the boundary stress tensor which depends on ξ

by extracting the zeromode. This leads to an extra factor of Lξ:

T µ
ν = −2 lim

r→0
Lξ

√
γ (Θµ

ν − δµ
ν (Θ + a) + · · ·)

We evaluate the stress tensor expectation values in terms of the five-dimensional de-

scription. It would be a useful check to redo this calculation in ten dimensions. The

boundary counterterms we include are

Ict =

∫

bdy
dd+2X

√
γ
(

−2c0 + c1Φ + c2Φ
2 + (c3 + c4Φ)A2 + c7A

4
)

where A2 ≡ AαAβγ
αβ .15,16 Note that Φ here is a proxy for any 5d scalar quantity which

behaves as e−2Φ = K.

We find that finite expectation values of the physical components of the stress tensor

require the addition of some extrinsic terms, in addition to the usual Gibbons-Hawking-

York term:

Iext =

∫

bdy

√
γ (2Θ + nrAµFrµ (c5 + c6Φ)) . (4.4)

The second term in (4.4) changes the boundary conditions on the massive gauge field away

from purely Dirichlet [42, 43]. Using our result in appendix C that the coefficient of the

F 2 term in the 5d lagrangian is e−
8

3
Φ, we see that the special choice c5 = 1, c6 = −8

3

implies Neumann boundary conditions on A. Remarkably and mysteriously, it turns out

that c5 = 1 is required for finiteness of T t
t , and c6 = −8

3 is required for the first law of

thermodynamics to be satisfied.

15We thank Dominik Nickel for pointing out that the A4 term can contribute.
16In v3, we have adopted the notation of [49].
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In a scale-invariant field theory with dynamical exponent 2, the energy density and

pressure in thermal equilibrium are related by17

2E = dCP.

Just like tracelessness of the stress-energy tensor of a relativistic CFT (the special case

z = 1), this relation arises as a Ward identity for conservation of the dilatation current.

For our case with d = z = 2, this implies E = CP. We constrain the counterterms to

cancel the divergences at r → 0 and so that the Ward identity is satisfied.18 Identifying

E = −T t
t and CP = T i

i , we find19

E = CP = Lξ(πβT )4
(

1 + ℵδ4
)

. (4.5)

The numerical factor ℵ depends on counterterm coefficients which are not determined by

finiteness of the energy, pressure, density, or by the Ward identity for scaling. We will fix

ℵ below by demanding the first law of thermodynamics. ℵ will turn out to be zero, in

agreement with [48, 49].

Note that the thermodynamic potential densities E ,CP in a system with dynamical

exponent z should scale like T d+z times some function of the dimensionless ratio µ
T , in

agreement with our expressions (4.5). In our z = 2 case, the factor of Lξ makes up for the

dimensions of the extra power of temperature.

As discussed in the previous subsection, the density is determined by
〈

T t
ξ

〉

. This gives

ρ = 4
Lξβ

2

r4H
= 4Lξβ

6(πT )4. (4.6)

Note that the still-mysterious T ξ
µ components of the stress tensor are naively still di-

vergent. That some components of the stress tensor would remain divergent in holographic

calculations with degenerate boundaries was anticipated in [45]. The fact that the com-

ponents which are hard to renormalize are precisely those whose physical interpretation is

unclear is heartening. One possible resolution of this issue is simply that one should only

allow fluctuations of the conjugate metric components δhµ
ξ which fall off at the boundary

faster than expected.20 Son’s parametrization [12] of non-normalizible fluctuations about

the Schrödinger spacetime corroborates this idea. We leave a fuller understanding of this

issue for future work.

17This is shown in [46]; for the generalization to other values of z, see [44].
18The conditions on the counterterms we find are:

c0 = 3, c1 = 2c3 − 4c5 − 2, c5 = 1

for finiteness, and the Ward identity requires

0 = 17 + 3c2 − 10c3 − 6c4 + 12c7.

Requiring finiteness of the one-point functions of the operator to which Aµ couples requires c3 = 0. The

one-point function of Φ is finite for any choice of the counterterm coefficients. We find below that the first

law of thermodynamics requires c6 = −8/3.
19In these expressions we have divided out a common factor of K = N2

16π2 in all of the one-point functions.
20We thank the referee for comments on this point.
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Note added in v2. As a small check on our calculation, the action evaluated on the

black hole solution satisfies

T (Ibulk + IGH + Ict + Iext)
∣

∣

on−shell
= CPL1L2,

as expected for the free energy in the grand canonical ensemble. (In this expression we used

the bulk action from appendix C, supplemented by [49], eqn (5.11) and [48], eqn (4.10).)

This equality is true of the regulated expressions for any choice of the counterterms.

4.4 Comments on chemical potential

Son [12] showed that the mode A0 of the metric in (4.3) is the bulk field associated to the

boundary number density current. The expansion of the finite-temperature metric (3.1) at

the boundary gives

gtt = − 1

r4
+

2β2

3r4H

1

r2
+ · · ·

Comparing with the parametrization of the fluctuations in (4.3), we see that A0 = 2β2

3r4

H
+

O(r2) in our background. This suggests that 2β2

3r4

H
determines the chemical potential for the

number density in this background. To extract more precisely the value of the chemical

potential indicated by these falloffs of A0 requires a better understanding of the couplings

of these modes [50].

Note added in v2. Following [48, 49], we can use a trick to determine the chemical

potential which makes precise the comments at the end of section 3.3. The null killing

vector at the horizon is v ∝ ∂τ = β∂t − 1
2β∂ξ. If we normalize v so that its component

along the asymptotic time direction is unity,v = ∂t −
1

2β2
∂ξ,

the temperature of the black hole is given by TH = κ
2π ; the surface gravity κ is defined as

κ2 = −1

2
∇avb∇cvdgacgbd.

This corroborates our earlier result that TH = 1
πβrH

. Now, the fact that the null killing

vector at the horizon does not point only in the time direction says that the ensemble

to which the black hole contributes has a density matrix ρ̂ = e−
1

T (Ĥ−µN̂); this is the

translation operator by which the euclidean geometry is identified. In our t, ξ coordinates,

this gives

µ = − 1

2β2
. (4.7)

In terms of the chemical potential (and setting ℵ = 0), the thermodynamic potentials are

E = CP =
1

4

Lξ(πT )4

µ2
, ρ =

1

2

Lξ(πT )4

µ3
, s =

Lξπ
4T 3

µ2
.

– 19 –



J
H
E
P
1
1
(
2
0
0
8
)
0
5
9

4.5 Comments on the first law of thermodynamics

The first law of thermodynamics should read

E + CP = Ts+ µρ.

Given the entropy density, thermodynamic relations determine µρ in a system with these

symmetries. From the Bekenstein-Hawking formula, we have an entropy density of the form

s = c1LξT
3,

where c1 is a constant. But the thermodynamic relation s = ∂CP

∂T implies

CP =
1

4
c1LξT

4 + p0(µ) =
1

4
Ts+ p0(µ)

where the second term is temperature-independent but otherwise thus-far undetermined.

The scale-invariance Ward identity, 2E = dCP, then implies

E + CP =

(

d

2
+ 1

)

CP

so

µρ = E + CP− Ts =

(

1

4

(

d

2
+ 1

)

− 1

)

Ts+
1

4
p0

For our case d = z = 2, this gives

µρ =
1

2
c1LξT

4 +
1

4
p0

Using the thermodynamic potentials E ,CP, ρ extracted from T , the enthalpy (the left

hand side of the first law E + CP = Ts+ µρ) is

E + CP = 2Lξ(πβT )4(1 + ℵδ4).

Using (4.6), (4.7) and (4.2), the right hand side is

Ts+ µρ = 4Lξ(πβT )4 − 2Lξ(πβT )4.

Consistency of the first law therefore requires ℵ = 0, which fixes the counterterm coefficient

c6 = −8
3 , and determines the integration constant p0(µ) = 0.

A small check on this result is the following. The free energy of a scale-invariant theory

at finite temperature and chemical potential can be written as

F = −V Tαf
(µ

T

)

.

The power α is determined by dimensional analysis, and for general z turns out to be

α = d+z
z . Note that this value implies that zE = dCP, in agreement with the scale-

invariance Ward identity. Free nonrelativistic gases, both classical and quantum with either

statistics, in the grand canonical ensemble give α = (d+2)/2 [46]. For z = 1, p = T d+1f
( µ

T

)

is the familiar scaling (e.g. when µ → 0). The behavior of α at more general z can be

argued as follows. With scaling exponent z, temperature (which is an energy), scales with

z powers of inverse-length. Therefore T 1/z scales with one power of inverse-length. The

free energy density should scale with d + z powers of inverse-length to make up for the

scaling of
∫

dtddx. This gives α = d+z
z , which agrees with the two familiar cases.
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5. Viscosity

In this section we will study the shear viscosity η of the fluid described holographically by

the metric (3.1). We will do this using the Kubo formula

η = − lim
ω→0

1

ω
ImGR(ω,~k = 0), (5.1)

where GR is the retarded two point function of the scalar mode of the stress tensor:

GR(ω,~k = 0) = −i
∫

ddxdteiωtθ(t)〈[Txy(t, ~x),Txy(0, 0)]〉.

Here we emphasize that the stress tensor is an operator with particle-number zero:21

Tµν(t, ~x) ≡
∫ Lξ

0
dξ Tµν(t, ~x, ξ) (5.2)

It was argued in [17] that very generally the linearized Einstein equation for φ ≡
hx

y(u)e−iωt is the scalar wave equation in the same background. The argument uses only

the SO(2) symmetry of rotations in the xy-plane; this symmetry is preserved in our solution.

We have also explicitly checked this statement using the ten-dimensional IIB supergravity

equations of motion.

Note that unlike the familiar case of three spatial dimensions, in our d = 2 example

there is no third dimension in which to give momentum to hx
y . However, this momentum

must be set to zero before taking the ω → 0 limit in the Kubo formula, and nothing is lost

for the purposes of studying the viscosity.

We will show in the remainder of this section that the familiar relation

η

s
=

1

4π

also holds in these models. Note that the form of our metric violates the hypotheses of

the general theorem [6]. It would be interesting to see how much further the assumptions

made there can be relaxed.

5.1 Scalar wave equation in the finite-temperature solution

For convenience, we will discuss this problem in six-dimensional Einstein-frame (i.e. dimen-

sionally reduce on the constant-volume P
2). We show that the answer is frame-independent

in the appendix.

The wave equation is

�φ = −gµνkµkνφ+
1√
g
∂u (

√
gguu∂uφ) .

In this metric,
√
g =

√
K

2u3
.

21We thank Pavel Kovtun for an extremely useful conversation on this point.
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We will study Fourier modes of the form:

φ(τ, y, ~x, u) = e
i 2

rH
(−eτ+qyy)

fK(u) ,

i.e. we have already set to zero the momentum in the spatial directions and the squashed-

sphere directions. Note that e, qy are dimensionless variables, measured in units of the

temperature (times 2π√
2
), i.e. they are the gothic variables of [24 – 26]. It will be crucial to

distinguish e from the variable ω conjugate to the asymptotic time coordinate t.

The wave equation becomes

0 = u3∂u

(

4f

u
∂ufK

)

−
(

−u
f

e2 + δ2(e − qy)
2 + uq2

y

)

fK.

The indicial equation near the horizon arises from setting fK = (1 − u)α and demanding

that the most singular terms at u = 1 cancel. This gives

0 = α2 +
e2
4
.

The solution obeying incoming-wave boundary conditions at the horizon takes the form

fK(u) = (1 − u)−ie/2FK(u)

where FK is analytic at u = 1. Next, to study the hydrodynamic limit, we can expand FK

in a small-frequency expansion:

fK(u) = (1 − u)−ie/2
(

1 + eF1(u) + qyF2(u) + · · ·
)

;

here the ellipses denote terms of order e2, eqy, q2
y.

22 Plugging back into the wave equation,

we find, just as in the AdS black hole [23 – 25],

F1(u) = i ln
1 + u

2
, F2(u) = 0.

Using guu = 4u2f√
K

and
√−g =

√
K

2u3r4

H
, this produces a flux factor

−F = K√−gguuf−K(u)∂ufK(u) = K2(1 − u2)

ur4H

(

ie
4

1

1 − u
− 1

4

ie
1 + u

)

+ O
(e2, qye, q2

y

)

where

K =
N2

16π2

is the normalization of the bulk action, written here in terms of field theory variables. It

will cancel in η/s. We need the relationship between the momenta associated to the horizon

coordinates and asymptotic coordinates:qy =
1√
2

(ω + l) rH , e =
1√
2

(l − ω) rH .

22Actually, the correct expansion treats e as the same order as q2

y ; this will not affect the viscosity

calculation.
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Note that we have restored factors of 1
πrH

in the definition of the t, ξ momenta relative to

the gothic momenta. At the boundary u = ǫ, the flux factor is therefore

−F|u=ǫ =
K
r3H

(

i

2

ω − l√
2

+ O
(

ω, l, k2, q2
y

)

)

.

We dropped contact terms in this expression. The real-time AdS/CFT prescription of [24]

says that the retarded Green’s function is obtained from the flux factor by

GR(ω,~k = 0) = −2F|u=ǫ.

At this point, we pause to consider whose Green’s functions we are studying. The

momentum-space correlator in the Kubo formula (5.1) has had a factor of the volume of

spacetime divided out by translation invariance:

G(ω,~k) =
1

V T

∫

dd+1x1

∫

dd+1x2 e
ik1·x1+ik2·x2G(x1, x2);

the factor V T = L1L2T is δd+1(0) in momentum space. As emphasized in equation (5.2),

the field theory stress tensor is the zeromode in the ξ direction of the operator to which hµ
ν

couples. Therefore, when we relate the two-point function of T (t, ~x, ξ) to the momentum-

space Green’s function GR, we should not divide out by the associated factor of Lξ:

〈

[Txy(ω,~k),Txy(−ω,−~k)]
〉

=

∫

dξ1dξ2

∫

dd~xdteiωt−i~k·~x〈[Txy(t, ~x, ξ1), Txy(0, 0, ξ2)]〉.

Putting this together, the Kubo formula for the viscosity then gives

η = − lim
ω→0

1

ω
ImGR(ω,~k = 0) = 2KLξ

1√
2r3H

=
πLξT

3N2

32
.

Note that in d spatial dimensions η indeed has mass dimension d. This is identical to the

familiar N = 4 answer except for a) the interpretation as the viscosity of a theory in two

spatial dimensions, and b) the factors of 1/
√

2 which come from the relation between the

asymptotic time coordinate and the coordinate which becomes null at the horizon.

Taking the ratio η
s reproduces the KSS value

η

s
=

1

4π
.

6. Discussion

Our black hole lives in a space with very different asymptotics from AdS. The structure of

the horizon, however, is the same as that of the AdS black hole; this is guaranteed by the

manner in which the solution was constructed [36]. The calculation of the viscosity is not

obviously determined only by the geometry near the horizon. However, the factors conspire

mysteriously to preserve the viscosity ratio. Our result, then, is some further indication

that the membrane paradigm should be taken seriously.
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In this paper we have focussed on an example with dynamical exponent z = 2 in d = 2

dimensions, which is related to the N = 4 theory by a twisted version of discrete light cone

quantization. Work on constructing string theory realizations for critical phenomena with

other values of z, d is in progress.

It would be interesting to find the black hole solution which asymptotes to the NR

metric with spherical spatial section, i.e. the analog of the black hole in global coordinates

in AdS. The melvinization can’t work quite the same if the starting point is AdS in global

coordinates, because the analog of y is then an angular variable.

Having identified a zero-temperature background with nonzero density, and its likely

weak-coupling description, we can calculate the Bertsch parameter (see e.g. [1]) for this

theory. The Bertsch parameter is the cold-atoms analog of the famous 3
4 -ratio of strong

and weak coupling free energies in the N = 4 theory.

The boundary field theory we are studying clearly contains bosonic excitations, which

carry charge under the number-density operator. There should be a chemical potential

to temperature ratio above which they simply Bose condense. In this regard, it would be

interesting to Melvinize the Sakai-Sugimoto model [47]; it has a better chance of describing

a system conaining only fermionic atoms.

A nice check on our result for the viscosity and our understanding of the thermody-

namics of the solution will be the location of the diffusion pole in the shear channel of the

stress-tensor correlators [51].

Note added. When this work was substantially complete, we learned that two other

groups [48, 49] had found results which overlap with ours.
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A. Details of Melvinization

In this appendix, we review the Null Melvin Twist, as formalized in a seven-step dance

in [36].
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A.1 Buscher rules and conventions

g′yy =
1

gyy
g′ay =

Bay

gyy
g′ab = gab −

gaygyb +BayByb

gyy
(A.1)

Φ′ = Φ − 1

2
ln gyy B′

ay =
gay

gyy
B′

ab = Bab −
gayByb +Baygyb

gyy
(A.2)

A.2 The Hopf vector on P
2

In constructing our solutions we were forced to pick an isometry direction along S5. A

particularly convenient choice involved realizing S5 as a Hopf fibration over P
2, which we

now review to make your life easier than ours was (if you don’t already know this stuff).

The round metrics on P
n and S2n+1 may be elegantly expressed in terms of the left-

invariant one-forms of SU(n). For SU(3), these can be written in coordinates as,

σ1 =
1

2
(dθ cos(ψ) + dφ sin(θ) sin(ψ))

σ2 =
1

2
(dθ sin(ψ) − dφ cos(ψ) sin(θ))

σ3 =
1

2
(dψ + dφ cos(θ))

In terms of these 1-forms, the metrics on P
2 and S5 may be written,

ds2
P2 = dµ2 + sin2(µ)

(

σ2
1 + σ2

2 + cos2(µ)σ2
3

)

ds2S5 = ds2
P2 +

(

dχ+ sin2(µ)σ3

)

2

where χ is the local coordinate on the Hopf fibre and A = sin2(µ)σ3 = sin2(µ)
2 (dψ+dφ cos(θ))

is the 1-form potential for the Kähler form on P
2 (dχ+A is the vertical one-form along the

Hopf fibration). The coordinate χ runs from 0 to 2π. This explicit coordinate presentation

is necessary to verify that our various solutions in fact solve the full 10d IIB supergravity

equations of motion, and to study the linearized equations of motion for the fluctuations.

A.3 Constructing the finite temperature solution

We now walk through the melvinization of the black D3-brane in all its majesty.

Step 1: We start with the black D3-brane solution,

ds2 =
1

h

(

−dτ2f + dy2 + d~x2
)

+ h

(

dρ2

f
+ ρ2

[

ds2
P2 + (dφ+ A)2

]

)

where h2 = 1 +
R4

A
ρ4 is the usual D3 harmonic function and f = 1 + g = 1 − ρ4

H
ρ4 is the

emblackening factor. In what follows, nothing untoward will happen to the d~x2, dρ2 or

ds2
P2 factors, so we’ll drop those terms and reintroduce them after the dust settles. The

truncated metric is thus,

ds2 =
1

h

(

−dτ2f + dy2
)

+ hρ2(dφ+ A)2
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Step 2: Boost by γ, ie τ → cτ − sy with c = cosh(γ) and c2 − s2 = 1:

ds2 =
1

h

(

−dτ2(1 + gc2) + dy2(1 − gs2) + 2dτdy(gcs)
)

+ hρ2(dχ+ A)2

Step 3: T-dualize along the dy isometry using the Buscher rules listed above:

ds2 = −dτ2 f

h(1 − gs2)
+ h

(

ρ2(dχ+ A)2 + dy2 1

1 − gs2

)

(A.3)

B = 2dy ∧ dτ
[ −gcs
1 − gs2

]

Φ = Φ0 −
1

2
ln

[

1 − gs2

h

]

(A.4)

Step 4: Shift the local 1-form dχ to dχ+ αdy to give

ds2 = −dτ2 f

h(1 − gs2)
+ h

(

ρ2(dχ+ A)2 + dy2 1 + ρ2α2(1 − gs2)

1 − gs2
+ 2dy(dχ + A)(αρ2)

)

Note that α has dimensions of 1
length .

Step 5: T-dualizing back along dy gives

ds2 = − dτ2

h(1 − gs2)

[

f − g2c2s2

1 + ρ2α2(1 − gs2)

]

− 2dydτ

h

[

gcs

1 + ρ2α2(1 − gs2)

]

+
dy2

h

[

1 − gs2

1 + ρ2α2(1 − gs2)

]

+ hρ2(dχ+ A)2
[

1

1 + ρ2α2(1 − gs2)

]

B =
αρ2

1 + ρ2α2(1 − gs2)
(dχ+ A) ∧

[

gcs dτ + (1 − gs2)dy
]

Φ = Φ0 −
1

2
ln

[

1 − gs2

h

]

Step 6&7: We now boost back by −γ and take a double scaling limit α → 0 with

αc = β held fixed. Since many terms do not survive this, it is easiest to do both steps at

once and report only the result, adding back in all the terms we dropped in the first step,

ds2 =
1

hK

[

−dτ2(1 + β2ρ2)f + dy2(1 − β2ρ2f) − 2dτdy(β2ρ2f)
]

+
1

h
d~x2 + h

[

dρ2

f
+ ρ2ds2

P2 +
ρ2

K
(dχ+ A)2

]

B =
2βρ2

K
(dχ+ A) ∧ (f dτ + dy)

Φ = Φ0 −
1

2
lnK

Note that β has dimensions of 1
length .

Step 8: Finally, we take the near-horizon limit, h → R2
A/ρ

2. To compare with the

solutions of [12, 13], it is convenient to switch variables to the radial radial coordinate

r

RA
=
RA

ρ
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in terms of which the boundary is at r = 0 and the horizon at rH = R2
A/ρH . In terms of r

and the parameter ∆ = βR2
A we have

β2ρ2 =
∆2

r2
h =

r2

R2
A

f = 1 − r4

r4H
K = 1 +

∆2r2

r4H
,

with the metric taking the form,

ds2 =
R2

A

r2K

[

−dτ2

(

1 +
∆2

r2

)

f + dy2

(

1 − ∆2

r2
f

)

− 2dτdy

(

∆2

r2
f

)

+Kd~x2 +K
dr2

f
+ r2

(

Kds2
P2 + (dχ+ A)2

)

]

B = 2∆
R2

A

r2K
(dχ+ A) ∧ (f dτ + dy)

Φ = Φ0 −
1

2
lnK.

Between the boundary and the horizon, K varies smoothly between 1 and 1 + ∆2

r2

H
. Impor-

tantly, the surface r = rH , where f → 0 and Bt → 0, remains a non-singular null horizon.

Near the horizon, ∂τ is a timelike killing vector which is perpendicular to the null geodesics

which span the horizon. We thus have a non-rotating black hole with ΩH = 0. This might

seem somewhat miraculous, since the geometry is not static but, like Kerr, only stationary,

and so we might reasonably expect a Killing horizon outside the black hole. In fact, this

construction, which preserved the near-horizon geometry at each step, had built into it that

the horizon would be irrotational (and, in particular, have no additional killing horizon).

We could introduce rotation by starting with a bifurcate killing horizon surrounding an

ergosphere — i.e. by starting with a rotating black D3 — but, since we will exploit the

unbroken rotational symmetry of our solution to compute the viscosity, we’ll leave this

generalization to later consideration.

The upshot is that we have a two-parameter family of finite-temperature solutions

labeled by the rH and ∆ defined in units of RA. This family has two simple and familiar

limits, ∆ → 0 and rH → ∞. Taking ∆ → 0, which sends K → 1, is easily seen to return

us to the non-extremal black D3-brane solution with which we began.

Taking rH → ∞, by contrast, takes us to the globally non-singular Schrödinger geom-

etry. To see this directly, it is useful to work in light-cone coordinates t̂ = (y + τ)/
√

2 and

ξ̂ = (y − τ)/
√

2, in terms of which the solution becomes,

ds2 =
R2

A

r2K

[

−2∆2

r2
fdt̂2+2dt̂dξ̂− g

2
(dt̂−dξ̂)2+Kd~x2+K

dr2

f
+r2

(

Kds2
P2+(dχ+A)2

)

]

B =
√

2 ∆
R2

A

r2K
(dχ+ A) ∧

(

(1 + f) dt̂+ (1 − f)dξ̂
)

Φ = Φ0 −
1

2
lnK.

In the limit rH → ∞, which takes f → 1 and K → 1, the metric reduces to,

ds2 =
R2

A

r2

[

−2∆2

r2
dt̂2 + 2dt̂dξ̂ + d~x2 + dr2

]

+R2
Ads

2
S5

B = 2
√

2 ∆
R2

A

r2
(dχ+ A) ∧ dt̂ Φ = Φ0,
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which is the Schrödinger geometry with z = 2, d = 2, times S5. Studying the finite-rH
solution near r ≪ rH gives the same result. We have thus embedded a black hole in an

asymptotically Schrödinger spacetime.

In terms of the coordinates used in the bulk of the paper,

t = β(y + τ), ξ =
1

2β
(y − τ)

the solution is

ds2 =
R2

A

r2K

[

− 1

r2
fdt2 + 2dtdξ − 1 − f

2

(

dt√
2β

−
√

2βdξ

)2

+Kd~x2 +K
dr2

f
+ r2

(

Kds2
P2 + (dχ+ A)2

)

]

B =
R2

A

2r2K
(dχ+ A) ∧ ((1 + f) dt+ (1 − f)2β2dξ) Φ = Φ0 −

1

2
lnK.

One final set of coordinates will be useful in the computations below. In terms of the di-

mensionless quantities u = r2/r2H = R2
H/ρ

2, δ = ∆/rH = βρH the solution takes the form,

ds2 =
R2

A

uKr2H

[

−1

u
f dt2 + 2dtdξ − 1 − f

2

(

dt√
2β

−
√

2βdξ

)2

+Kd~x2

+
K

4ur2Hf
du2

]

+R2
A

(

ds2
P2 +

1

K
(dχ+ A)2

)

B =
R2

A

2ur2HK
(dχ+ A) ∧ ((1 + f) dt + (1 − f)2β2dξ)

Φ = Φ0 −
1

2
lnK.

where

f = 1 − u2 K = 1 + δ2u,

These variables simplify many of the computations.

B. Frame (in)dependence of the viscosity calculation

After compactifying to D dimensions, the string frame metric is related to the D-

dimensional Einstein-frame metric by the Weyl rescaling

gE,D
µν = e

4Φ

D−2 g(str)
µν .

In our solution, the dilaton is

e2Φ =
1

K

so we have

gE,D
µν = K

2

2−D g(str)
µν

In the special case D = 10, this says gE,10
µν = K

1

4 g
(str)
µν .
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Now consider the wave equation in a conformal frame reached by an arbitrary power

of K, where the metric is:

ga
µν = Kag(str)

µν .

We have

det ga = KDa det g(str),
√
ga =

K5a−1

2u3r4H
vol10−D

where vol10−D is the constant volume of the compact dimensions, which will scale out of

the wave equation.

The wave equation for a scalar in this background is

�φ =
1

KaD/2
2u3K∂u

(

K−a4u2f
KaD/2−1

2u3
∂uφ

)

+ · · ·

=
4u3

KaD/2−1
∂u

(

Ka(D
2
−1)−1f

u
∂uφ

)

+ · · ·

The einstein-frame condition above says that inD-dimensional Einstein frame, Ka = e−
4Φ

D−2

which says

Ka(D
2
−1)−1 = 1.

So we see that in einstein frame, in whatever number of dimensions we want to live in, say

10 or 6, the factor K does not appear in the wave equation.

This in turn implies that the viscosity is independent of δ ≡ β
rH

.

C. Comments on reduction to five dimensions

Let Γ = −1
2 lnK; this is the profile for both the 10d dilaton and the KK scalar associated

to the Hopf direction. The following two equations are true:

0 = −∂µ

(√
gFµνe(ν−3)Γ

)

+ z(z + d)
√
ge(3ν−1)ΓAν

0 = 16∂µ

(

e(3ν−1)Γ√ggµν∂νΓ
)

+
√
g
(

e(ν−3)ΓF 2 + 2z(z + d)e(3ν−1)ΓA2
)

where

e2Γ ≡ 1

K

A =
2β

r2K
(fdτ + dy)

and

ds2 = Kν 1

r2K

(

−
(

1 +
β2

r2

)

fdτ2 − β2f

r2
2dydτ +

(

1 − β2

r2
f

)

dy2 +Kd~x2 +K
dr2

fr2

)

These are the respective equations of motion for Aν and Φ for a five-dimensional action

of the form

S5 =

∫

d5x
√
g

(

R− c1e
a1Φ+b1σ (∂Φ)2 − c2

(

1

4
ea2Φ+b2σF 2 +

m2
A

2
ea3Φ+b2σA2

))

+ . . .
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with m2
A = z(z−d)

L2 as usual, and a1 + b1 = a3 + b3 = 3ν − 1, a2 = ν − 3 and a2 = a3. ν = 1
3

is 5d Einstein frame. Here σ is the other scalar arising from the KK reduction. The . . .

indicate terms that do not depend on Φ, A. We have not yet been able to determine the

rest of the action.
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